Course	Credit	Dhotohiorocotor Engineering 9 Die	Contact	Total
Code	Hours	Photobioreactor Engineering & Bio-	Hrs/Week	Contact Hrs
	(Th-Pr)	Processing	(Th-Pr)	(Th-Pr)
ESE-802	3-0	(core)	3-0	45-0

Course Outline:

- Photobioreactor systems
- Modeling & simulation
- Cultivation Fundamentals
- Algae Separation Technology
- Comparison of seed oil & algal oil extraction
- Mass transfer in Extraction processes
- Super critical fluid Extraction

<u>Eligibility Criteria:</u> B.E (Chemical, Mechanical, Electrical, Environmental and Materials)

Recommended Books:

S.	Title	Author(s)	Assigned	Remarks
No.			Code	
1.	Advances in biochemical engineering biotechnology: Bioprocess and Algae reactor technology	J. F. Cornet, J. Gomes, K. Scheibenbogen	JF	Reference
2.	Hand book of Micro-Algal culture Biotechnology and applied Phycology	Amos Richmond	AR	Reference
3.	Airlift Bioreactors	Yusuf Chisti	YC	Reference

4.	Technology and solvents	Phillip J. Wakelyn	PW	Reference
	for extracting oilseeds and			
	nonpetroleum oils			
5.	Supercritical fluid	Mark A. McHugh, Val J.	MV	Reference
	extraction: principles and	<u>Krukonis</u>		

q	practice			
---	----------	--	--	--

Course Objectives:

The primary objectives of this course are to familiarize students with stimulated algae growth in Photobioreactors using engineering approach and comprehensive overview of algae harvesting/separation techniques. Design of Mechanical & Supercritical extraction techniques.

Learning outcome:

The students will be familiarized with the core concepts of green energy production in Photobioreactors. Growth modeling, material & energy balance and airlift system design to operate in neutral energy cycle will be self evident. Modeling & simulation of multi phase flow in the Photobioreactors and bio-processing in downstream processing will come to light.

Topics Covered:

No.	Topics	Book	Conta
			ct
			Hours
1.	Principles for mass cultivation of microalgae:	JF &	3
	interactions between radiation, cell density and turbulence;	AR	
	oxygen as an indicator for culture condition; maintenance of		
	pH, optimal cell density and mono-algal cultures.		
2.	Technological aspects involved in microalgal	AR	3
	production: various types of reactors: open and closed		
	systems; turbulence and flow; separation, drying and		
	marketing; simple technologies for algal production.		

3.	Photobioreactor design and operation: CSTR concept	JF &	3
	and algal growth kinetics photobioreactor instrumentation:	AR	
	On-line probes and off-line analyses.		
4.	Photobioreactor performance modeling and process	Any	6
	simulation: Energy and mass balances (Aspen/hysys),	related	

	yield expressions for bio-systems mathematical models for		
	the photobioreactor system and its performance simulation.		
5.	Photobioreactor Hydrodynamics & Mass Transfer: Shear	YC &	3
	stress calculations, Oxygen & CO ₂ Mass transfer	AR	
	and Bioreactor scale-up and scale-down criteria (Ansys		
	fluent)		
6.	Down-stream processing: Comparative evaluation of	Any	3
	Algae Harvesting/ Dewatering Techniques, Quantitative	related	
	evaluation of dewatering performance:		
	 Centrifugation 		
	 Floculation 		
	 Filteration & Screening 		
	 Gravity Sedimentation 		
	 Flotation 		
	Drying techniques:		
	 Air drying 		
	 Solar drying 		
	 Oven drying 		
	 Freeze drying 		
	 Spray drying 		
7.	Bio-Processing Lab:		8
	1. Experiments on Photobioreactor (Growth rate		
	determination, nutrition media variations, pH and		
	temperature variations)		
	2. Identify the algal strain for bio diesel production		
	3. Algae cells harvesting using centrifuge, sedimentation		
	and filteration (observation of efficient extraction		
	process)		

8.	Lipid Extraction: Mechanical Processes	PW,	2
	1. Expression/ Extruder Expeller	JMC	
	2. Ultrasonic assisted extraction	FG,	
	3. Microwave assisted extraction		

9.	Lipid extraction: Chemical Processes	JF, AR	8
	1. Solvent extraction: basic principles, Mass transfer	&	1
	evaluation through ternary diagrams, solvent selection	Any	1
	and applications	related	
	2. Super Critical Fluid Extraction: Basic principles,		1
	Thermodynamics of Super critical fluids, Solubility/		1
	Mass transfer measurements of lipid constituents in Sc		1
	fluids, Sc fluid extraction of algae; Pressure & energy		1
	requirements and economic analysis		1
	3. Soxhlet extraction: Overview of principles and		1
	operation of soxlet extractor		1
	4. Single step extraction by Quantum		1
	Fracturing Technology: Electromagnetic pulses		1
	generation for efficient extraction, Potential difference		
	requirements, pH criteria for extraction, single step		1
	extraction process flow diagrams		1
10.	Lipid-Extraction Lab:	YC &	6
	1. Perform experiments on super critical fluid extraction	AR	1
	unit (Find extraction efficiency with different operating		1
	pressures using feed stocks like algae, Jatropha,		1
	Rapseed etc)		1
	2. Find the lipid contents in the dry algae sample using		1
	soxhlet extraction (Find Extraction rate using		1
	solvents chloroform & hexane)		